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Abstract

Breast cancer remains a major global health challenge, where timely and accurate detection is critical
for improving survival outcomes. Recent advances in artificial intelligence (Al), encompassing
machine learning and deep learning techniques, have transformed breast cancer screening and diagnosis
by enhancing image interpretation across multiple imaging modalities, including mammography,
ultrasound, magnetic resonance imaging (MRI), and thermography. Al-driven models particularly
convolutional neural networks, hybrid radiomics-deep learning frameworks, and transfer learning
architectures enable automated feature extraction, precise lesion detection, segmentation, and
classification, often achieving diagnostic performance comparable to or exceeding expert radiologists.
The incorporation of explainable Al approaches, such as saliency maps and attention mechanisms,
further improves transparency, interpretability, and clinical trust. Beyond detection, Al supports risk
stratification, workflow prioritization, biomarker prediction, and personalized clinical decision-making,
addressing challenges of inter-observer variability and limited expert availability, especially in
resource-constrained settings. Although issues related to data heterogeneity, standardization, and
regulatory validation persist, growing clinical integration and robust evidence highlight Al’s potential
to complement conventional imaging, optimize screening programs, and advance precision medicine in
breast cancer care.
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Introduction

Breast cancer is a leading cause of cancer-related morbidity and mortality in women
globally, with early detection fundamentally improving patient outcomes (Giaquinto et al.,
Sung et al., 2021; Kim et al., 2025) [ 21 Conventional breast cancer screening and
diagnosis primarily involve mammography, ultrasound, and MR, interpreted by radiologists
and pathologists (Mann et al., 2020; Sardanelli et al., 2024) 7 361, While effective, these
modalities are subject to inter-observer variability and limited availability of expert
interpretation in resource-constrained settings (Bitencourt et al., 2024; Lehman et al., 2019)
[9 431 The integration of Al encompassing machine learning (ML) and deep learning (DL)
promises to overcome these limitations by automating intricate pattern recognition and
extracting subtle imaging cues beyond human perception (Sechopoulos et al., 2024; Carriero
et al., 2024; Al Khalil et al., 2023) [37.10.4],

2. Al in Breast Imaging: Core Concepts and Models

Al algorithms for breast cancer detection typically leverage supervised learning, wherein
models are trained using annotated medical images to recognize patterns associated with
malignant and benign tissues (Sechopoulos et al., 2024; Carriero et al., 2024) 719, Among
Al methods, convolutional neural networks (CNNs) are particularly prominent due to their
ability to learn hierarchical features directly from imaging data without manual feature
engineering (An et al., 2025; Wahed et al., 2025) [6 42, Other models include support vector
machines (SVM), random forests (RF), and transfer learning architectures that repurpose pre-
trained networks (e.g., ResNet, DenseNet, VGG) for medical imaging tasks (Minnoor &
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Baths, 2023) 281, Explainable Al (XAl) is increasingly
incorporated to enhance model transparency,
interpretability, and clinical trust, with SHapley Additive
exPlanations (SHAP) emerging as a leading explainability
tool alongside techniques like LIME, Grad-CAM, and
saliency maps (Ghasemi et al., 2024; Bai et al., 2024; Alom
et al., 2025) [18.7.5],

3. Imaging Modalities and Al Applications

3.1 Mammography

Mammography remains the cornerstone of population-
based breast cancer screening due to its proven effectiveness
in early tumor detection and mortality reduction (Duffy et
al.,, 2020) 1. In recent years, artificial intelligence has
significantly enhanced the diagnostic capabilities of
mammographic imaging by improving lesion detection,
classification, and risk stratification (Sechopoulos et al.,
2024; Carriero et al., 2024) 13" 19 Deep learning-based
models, particularly convolutional neural networks (CNNs),
are highly effective in identifying subtle radiographic
features such as microcalcifications, architectural
distortions, and asymmetries that are often challenging for
human readers, especially in dense breast tissue (Tan et al.,
2025; Lauritzen et al., 2023) [0 2381 Multi-view and multi-
scale  CNN architectures that simultaneously analyze
craniocaudal and mediolateral oblique views have
demonstrated superior performance, achieving high
sensitivity and specificity with area under the receiver
operating characteristic curve (AUC) values frequently
exceeding 0.93 in distinguishing malignant from benign
lesions (Tan et al., 2025) [ Additionally, Al-driven
mammography systems support automated breast density
assessment and personalized risk prediction, thereby
enabling more tailored screening strategies (Gastounioti et
al., 2022; Yala et al., 2019) [7- 431, When integrated into
clinical workflows, these Al tools function as decision-
support systems, reducing radiologist workload, minimizing
false positives and false negatives, and enhancing overall
screening efficiency and diagnostic confidence (Lauritzen et
al., 2024) [%31,

3.2 Ultrasound

Breast ultrasound is a valuable adjunct imaging modality,
particularly for women with dense breast tissue where the
sensitivity of mammography is diminished (Thigpen et al.,
2018). The incorporation of artificial intelligence has
markedly improved the diagnostic utility of ultrasound by
enhancing lesion detection, segmentation, and classification
accuracy (An & Li, 2025; Alom et al., 2025) [6 51, Deep
learning models such as U-Net and its variants (e.g., DBU-
Net, Attention U-Net) have been widely applied for precise
tumor boundary delineation, enabling better differentiation
between benign and malignant lesions based on
morphological and textural features (Punn and Agarwal,
2022; Kormpos et al., 2025) 3% 22 In addition, transfer
learning approaches using pre-trained convolutional neural
networks (e.g., DenseNet, EfficientNet) have reduced the
need for large annotated datasets while maintaining high
diagnostic performance (Moursi et al., 2025) 0. Al-
enhanced ultrasound systems also facilitate automated
feature extraction and standardized reporting, reducing
operator dependency one of the major limitations of
conventional ultrasound (Carriero et al., 2024; Fu et al.,
2024) [0 151 Fyrthermore, emerging ultrasound-Al
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frameworks offer real-time diagnostic decision support,
making them suitable for integration with handheld and
point-of-care ultrasound devices (Clarius, 2025) 251, These
advancements expand access to early breast cancer
detection, particularly in low-resource and rural settings,
and support more accurate, rapid, and user-independent
clinical assessments (An & Li, 2025) €],

3.3 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) offers superior soft-
tissue contrast and functional imaging capabilities, making it
particularly valuable for breast cancer screening in high-risk
populations and for resolving equivocal findings from other
imaging modalities (Mann et al., 2019; Al Khalil et al.,
2023; Olviedo et al.) " 4, The application of machine
learning (ML) and deep learning (DL) techniques to breast
MRI has significantly enhanced lesion characterization by
enabling automated analysis of complex, multiparametric
datasets, including dynamic contrast-enhanced (DCE) and
diffusion-weighted imaging (DWI) (Zhao et al., 2023;
Carriero et al., 2024; Hirsch et al., 2025) [+ 10. 351 Advanced
convolutional neural networks and hybrid radiomics-DL
models have demonstrated excellent performance in
differentiating malignant from benign lesions, improving
sensitivity while maintaining high specificity (Al Khalil et
al., 2023; Olviedo et al., 2025; Abdullah et al., 2025) 7.4 11,
Moreover, Al-driven feature extraction allows identification
of subtle spatial and temporal enhancement patterns that
may be overlooked by human observers (Miiller-Franzes et
al., 2023; Hirsch et al., 2025) [3% 31, Systematic evidence
across multiple studies reports strong diagnostic accuracy
and consistent performance, highlighting the robustness and
generalizability of MRI-based Al models across diverse
datasets and imaging protocols (Al Khalil et al., 2023;
Carriero et al., 2024; Abdullah et al., 2025) 2 10. 11, These
advancements support more accurate risk stratification,
reduce false positives, and contribute to personalized
diagnostic decision-making in clinical breast imaging
(Bitencourt et al., 2024; Sechopoulos et al., 2024) %371,

3.4 Thermography

Thermography is a non-invasive, radiation-free, and
relatively low-cost imaging modality that measures surface
temperature variations associated with underlying vascular
and metabolic changes in breast tissue, making it
particularly feasible for screening in remote or resource-
limited settings (Singh & Singh, 2020; Gofii-Arana et al.,
2024; Al Husaini et al., 2024) [38 1931 The integration of
artificial intelligence has improved the interpretability of
thermographic images by enabling automated feature
extraction, pattern recognition, and classification of
abnormal thermal asymmetries (Bansal et al., 2023;
Mirasbekov et al., 2024) & 21, Machine learning and deep
learning models, including support vector machines and
convolutional neural networks, have shown promising
results in distinguishing suspicious from normal thermal
patterns; however, reported diagnostic performance varies
considerably across studies (Aidossov et al., 2023; Civilibal,
2023; Goii-Arana et al., 2024) 2 1 191 This variability is
largely attributed to differences in image acquisition
protocols, environmental conditions, and limited availability
of high-quality, labeled datasets. Future progress and
broader clinical adoption of thermography-based Al systems
may depend on the development of robust unsupervised and
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self-learning  algorithms  capable of adapting to
heterogeneous data and generalizing effectively from
limited annotated samples, thereby improving reliability and
clinical confidence (Al Husaini et al., 2024; Mirasbekov et
al., 2024) 3291,

4. Clinical Applications and Integration
Al systems assist radiologists in workflow prioritization,
reducing interpretive fatigue, and improving efficiency
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(Lauritzen et al., 2024; Leibig et al., 2022) 2% 251, When
incorporated into clinical workflows, Al can pre-screen
normal examinations, flag critical cases, and provide
adjunctive measures like BI-RADS categorization and
compression of report turnaround times (Tan et al., 2025;
Dratsch et al., 2023) [, Clinical implementation is seen in
both high-income health systems and emerging programs
aimed at democratizing access to diagnostic tools (Al
Husaini et al., 2024) 1,

Table: 1: Summary of Imaging Modalities, Artificial Intelligence Models, and Their Clinical Applications in Breast Cancer Detection

I:/Irgzgll?t%/ Common Al Models| Key Advances Ty&t:Ja(I:/PAegzal;?ce;r)lce Clinical Applications References
CNNs (e.g., ResNet, rrlw_i?:?g::glcl?;?g:ioonr;s Workflow prioritization, | Sechopoulos et al.
Mammography DenseNet), Multi- identification. risk IAUC > 0.93; Accuracy| reducing false (2024) 371 Carriero
view CNNs, Transfer ificati BI‘-R ADS 90-99% positives/negatives, pre- |et al. (2024) ['%; Tan
Learning stratification, Bl screening normal cases et al. (2025) 9
categorization
U-Net variant_s, Lesion segmentation Adjunct for_dense breasts, _
Ultrasound Transfer Learning classification real-tim’e Accuracy up to 100%; operator-lnde_pendent An & Li (2025) [T,
(e.g., DenseNet, decision s,u ort AUC 0.95+ assessment, point-of-care |Alom et al. (2025) [5]
EfficientNet), CNNs PP devices
Hybrid Radiomics- Lesion characterization, High-risk screening, (Z(fél;)([r‘]‘iljﬁl\ggﬁlliah
MRI DL, CNNs, multiparametric analysis AUC 0.92-0.97 equivocal findings =\ [1]-
Multimodal models (DCE, DWI) resolution, risk stratification etal. (2025) = Zhao
' ' et al. (2023) 4
. Variable; Accuracy | Non-invasive screening in | Gofii-Arana et al.
Thermography SVM, E:/l'}l_'_\lS’LHyb”d dete(;lt-ihoer:mjtge %ngt?\lition 85-95% (promising | resource-limited settings, |(2024)[*°]; Bansal et
P 9 but inconsistent) adjunct tool al. (2023) 181,

Fig 1: Al saliency/heatmaps highlighting breast lesions on mammograms (Pertuz et al., 2023) [,

Figure 1 illustrates the application of Al-based saliency and
heatmap techniques for highlighting suspicious breast
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the  heatmap

irrelevant

lesions on mammograms, as reported by Pertuz et al. (2023)
1331, Panel (a) shows the original mammographic image with
a radiologist-defined lesion boundary, serving as the ground
truth, while panel (b) presents the Al-generated
saliency/heatmap overlay, where warmer colors (yellow-
red) indicate regions with higher model attention and

surrounding tissue, demonstrating the model’s ability to
capture diagnostically meaningful features such as mass
density and architectural distortion. Panel (c) further
compares Al-guided lesion localization with manual
annotation, showing strong spatial agreement between the
predicted region and expert-defined contours. This visual
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correspondence highlights the potential of explainable Al
methods to enhance transparency, build clinical trust, and
support radiologists by clearly indicating why a model flags
a region as suspicious. Overall, the figure underscores how
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saliency maps can function as effective decision-support
tools, improving interpretability and facilitating the
integration of Al into routine mammographic assessment.

Diagnosis

Screening |

Surgical assistance |

-s\é

Prognosis

Tumor Microenvironment
Exploration

Fig 2: Futuristic visualization of Al integrating multiple imaging modalities (mammography, MRI, ultrasound) with neural network overlays
(Ran et al., 2025) 3]

Figure 2 presents a futuristic conceptual framework
illustrating the integrative role of artificial intelligence
across the breast cancer care continuum by combining
multimodal imaging data mammography, ultrasound, MRI,
and digital pathology with advanced neural network
architectures (Ran et al., 2025) %, The visualization
highlights how Al functions as a central analytical engine,
supporting key clinical stages including screening,
diagnosis, tumour grading, biomarker prediction (such as
TMB/MSI), surgical assistance, prognosis estimation, and
tumour  microenvironment  exploration. By  fusing
heterogeneous imaging and biological data, Al enables

comprehensive feature extraction and cross-modal learning,
leading to more accurate lesion characterization and
personalized risk assessment. The depiction of neural
network overlays emphasizes the shift from single-modality
interpretation toward holistic, data-driven decision-making,
where Al augments clinician expertise rather than replacing
it. Overall, the figure underscores the transformative
potential of Al in enabling precision oncology, streamlining
clinical workflows, and advancing individualized breast
cancer management through seamless integration of
imaging, pathology, and predictive analytics.

Original Image

Predicted Class: Narmal

Fig 3: Explainable Al output: Deep learning model with attention maps for accurate breast cancer classification (Alom et al., 2025) I°]
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Figure 3 demonstrates the application of explainable
artificial intelligence (XAIl) in breast ultrasound analysis,
showcasing how a deep learning model classifies breast
tissue while providing transparent visual justification for its
prediction (Alom et al., 2025) Bl The figure compares the
original ultrasound image with the model’s predicted output,
labeled as “Normal,” accompanied by attention or activation
maps that highlight regions most influential in the
classification process. The focused attention on relevant
tissue structures, rather than background artifacts, indicates
that the model is learning clinically meaningful features
such as tissue homogeneity and echo patterns. This
interpretability is crucial for enhancing clinician confidence,
as it allows radiologists to verify that Al decisions are
grounded in valid anatomical and pathological cues.
Overall, the figure underscores the importance of
explainable Al frameworks in improving diagnostic
reliability, facilitating clinical adoption, and ensuring
responsible integration of deep learning models into breast
cancer screening and diagnostic workflows.

Conclusion

Al is revolutionizing breast cancer detection by enhancing
performance across imaging modalities and supporting
clinical decision-making. Deep learning models, especially
in mammography, ultrasound, and MRI, have achieved high
diagnostic accuracy and show potential to reduce false
positives and negatives compared to traditional methods.
Explainable Al and transfer learning further advance model
reliability and interpretability. While challenges remain,
including dataset standardization and clinical validation,
ongoing research and integration efforts are poised to
transform early detection paradigms and improve patient
outcomes worldwide.
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