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Abstract 
Breast cancer remains a major global health challenge, where timely and accurate detection is critical 
for improving survival outcomes. Recent advances in artificial intelligence (AI), encompassing 
machine learning and deep learning techniques, have transformed breast cancer screening and diagnosis 
by enhancing image interpretation across multiple imaging modalities, including mammography, 
ultrasound, magnetic resonance imaging (MRI), and thermography. AI-driven models particularly 
convolutional neural networks, hybrid radiomics-deep learning frameworks, and transfer learning 
architectures enable automated feature extraction, precise lesion detection, segmentation, and 
classification, often achieving diagnostic performance comparable to or exceeding expert radiologists. 
The incorporation of explainable AI approaches, such as saliency maps and attention mechanisms, 
further improves transparency, interpretability, and clinical trust. Beyond detection, AI supports risk 
stratification, workflow prioritization, biomarker prediction, and personalized clinical decision-making, 
addressing challenges of inter-observer variability and limited expert availability, especially in 
resource-constrained settings. Although issues related to data heterogeneity, standardization, and 
regulatory validation persist, growing clinical integration and robust evidence highlight AI’s potential 
to complement conventional imaging, optimize screening programs, and advance precision medicine in 
breast cancer care. 
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Introduction 
Breast cancer is a leading cause of cancer-related morbidity and mortality in women 
globally, with early detection fundamentally improving patient outcomes (Giaquinto et al., 
Sung et al., 2021; Kim et al., 2025) [39, 21]. Conventional breast cancer screening and 
diagnosis primarily involve mammography, ultrasound, and MRI, interpreted by radiologists 
and pathologists (Mann et al., 2020; Sardanelli et al., 2024) [37, 36]. While effective, these 
modalities are subject to inter-observer variability and limited availability of expert 
interpretation in resource-constrained settings (Bitencourt et al., 2024; Lehman et al., 2019) 

[9, 43]. The integration of AI encompassing machine learning (ML) and deep learning (DL) 
promises to overcome these limitations by automating intricate pattern recognition and 
extracting subtle imaging cues beyond human perception (Sechopoulos et al., 2024; Carriero 
et al., 2024; Al Khalil et al., 2023) [37, 10, 4]. 
 
2. AI in Breast Imaging: Core Concepts and Models 
AI algorithms for breast cancer detection typically leverage supervised learning, wherein 
models are trained using annotated medical images to recognize patterns associated with 
malignant and benign tissues (Sechopoulos et al., 2024; Carriero et al., 2024) [37, 10]. Among 
AI methods, convolutional neural networks (CNNs) are particularly prominent due to their 
ability to learn hierarchical features directly from imaging data without manual feature 
engineering (An et al., 2025; Wahed et al., 2025) [6, 42]. Other models include support vector 
machines (SVM), random forests (RF), and transfer learning architectures that repurpose pre-
trained networks (e.g., ResNet, DenseNet, VGG) for medical imaging tasks (Minnoor &  
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Baths, 2023) [28]. Explainable AI (XAI) is increasingly 
incorporated to enhance model transparency, 
interpretability, and clinical trust, with SHapley Additive 
exPlanations (SHAP) emerging as a leading explainability 
tool alongside techniques like LIME, Grad-CAM, and 
saliency maps (Ghasemi et al., 2024; Bai et al., 2024; Alom 
et al., 2025) [18, 7, 5]. 
 
3. Imaging Modalities and AI Applications 
3.1 Mammography 
Mammography remains the cornerstone of population-
based breast cancer screening due to its proven effectiveness 
in early tumor detection and mortality reduction (Duffy et 
al., 2020) [14]. In recent years, artificial intelligence has 
significantly enhanced the diagnostic capabilities of 
mammographic imaging by improving lesion detection, 
classification, and risk stratification (Sechopoulos et al., 
2024; Carriero et al., 2024) [37, 10]. Deep learning-based 
models, particularly convolutional neural networks (CNNs), 
are highly effective in identifying subtle radiographic 
features such as microcalcifications, architectural 
distortions, and asymmetries that are often challenging for 
human readers, especially in dense breast tissue (Tan et al., 
2025; Lauritzen et al., 2023) [40, 23]. Multi-view and multi-
scale CNN architectures that simultaneously analyze 
craniocaudal and mediolateral oblique views have 
demonstrated superior performance, achieving high 
sensitivity and specificity with area under the receiver 
operating characteristic curve (AUC) values frequently 
exceeding 0.93 in distinguishing malignant from benign 
lesions (Tan et al., 2025) [40]. Additionally, AI-driven 
mammography systems support automated breast density 
assessment and personalized risk prediction, thereby 
enabling more tailored screening strategies (Gastounioti et 
al., 2022; Yala et al., 2019) [17, 43]. When integrated into 
clinical workflows, these AI tools function as decision-
support systems, reducing radiologist workload, minimizing 
false positives and false negatives, and enhancing overall 
screening efficiency and diagnostic confidence (Lauritzen et 
al., 2024) [23]. 
 
3.2 Ultrasound 
Breast ultrasound is a valuable adjunct imaging modality, 
particularly for women with dense breast tissue where the 
sensitivity of mammography is diminished (Thigpen et al., 
2018). The incorporation of artificial intelligence has 
markedly improved the diagnostic utility of ultrasound by 
enhancing lesion detection, segmentation, and classification 
accuracy (An & Li, 2025; Alom et al., 2025) [6, 5]. Deep 
learning models such as U-Net and its variants (e.g., DBU-
Net, Attention U-Net) have been widely applied for precise 
tumor boundary delineation, enabling better differentiation 
between benign and malignant lesions based on 
morphological and textural features (Punn and Agarwal, 
2022; Kormpos et al., 2025) [34, 22]. In addition, transfer 
learning approaches using pre-trained convolutional neural 
networks (e.g., DenseNet, EfficientNet) have reduced the 
need for large annotated datasets while maintaining high 
diagnostic performance (Moursi et al., 2025) [30]. AI-
enhanced ultrasound systems also facilitate automated 
feature extraction and standardized reporting, reducing 
operator dependency one of the major limitations of 
conventional ultrasound (Carriero et al., 2024; Fu et al., 
2024) [10, 15]. Furthermore, emerging ultrasound-AI 

frameworks offer real-time diagnostic decision support, 
making them suitable for integration with handheld and 
point-of-care ultrasound devices (Clarius, 2025) [25]. These 
advancements expand access to early breast cancer 
detection, particularly in low-resource and rural settings, 
and support more accurate, rapid, and user-independent 
clinical assessments (An & Li, 2025) [6]. 
 
3.3 Magnetic Resonance Imaging (MRI)  
Magnetic resonance imaging (MRI) offers superior soft-
tissue contrast and functional imaging capabilities, making it 
particularly valuable for breast cancer screening in high-risk 
populations and for resolving equivocal findings from other 
imaging modalities (Mann et al., 2019; Al Khalil et al., 
2023; Olviedo et al.) [27, 4]. The application of machine 
learning (ML) and deep learning (DL) techniques to breast 
MRI has significantly enhanced lesion characterization by 
enabling automated analysis of complex, multiparametric 
datasets, including dynamic contrast-enhanced (DCE) and 
diffusion-weighted imaging (DWI) (Zhao et al., 2023; 
Carriero et al., 2024; Hirsch et al., 2025) [44, 10, 35]. Advanced 
convolutional neural networks and hybrid radiomics-DL 
models have demonstrated excellent performance in 
differentiating malignant from benign lesions, improving 
sensitivity while maintaining high specificity (Al Khalil et 
al., 2023; Olviedo et al., 2025; Abdullah et al., 2025) [27, 4, 1]. 
Moreover, AI-driven feature extraction allows identification 
of subtle spatial and temporal enhancement patterns that 
may be overlooked by human observers (Müller-Franzes et 
al., 2023; Hirsch et al., 2025) [31, 35]. Systematic evidence 
across multiple studies reports strong diagnostic accuracy 
and consistent performance, highlighting the robustness and 
generalizability of MRI-based AI models across diverse 
datasets and imaging protocols (Al Khalil et al., 2023; 
Carriero et al., 2024; Abdullah et al., 2025) [27, 10, 1]. These 
advancements support more accurate risk stratification, 
reduce false positives, and contribute to personalized 
diagnostic decision-making in clinical breast imaging 
(Bitencourt et al., 2024; Sechopoulos et al., 2024) [9, 37]. 
 
3.4 Thermography 
Thermography is a non-invasive, radiation-free, and 
relatively low-cost imaging modality that measures surface 
temperature variations associated with underlying vascular 
and metabolic changes in breast tissue, making it 
particularly feasible for screening in remote or resource-
limited settings (Singh & Singh, 2020; Goñi-Arana et al., 
2024; Al Husaini et al., 2024) [38, 19, 3]. The integration of 
artificial intelligence has improved the interpretability of 
thermographic images by enabling automated feature 
extraction, pattern recognition, and classification of 
abnormal thermal asymmetries (Bansal et al., 2023; 
Mirasbekov et al., 2024) [8, 29]. Machine learning and deep 
learning models, including support vector machines and 
convolutional neural networks, have shown promising 
results in distinguishing suspicious from normal thermal 
patterns; however, reported diagnostic performance varies 
considerably across studies (Aidossov et al., 2023; Civilibal, 
2023; Goñi-Arana et al., 2024) [2, 11, 19]. This variability is 
largely attributed to differences in image acquisition 
protocols, environmental conditions, and limited availability 
of high-quality, labeled datasets. Future progress and 
broader clinical adoption of thermography-based AI systems 
may depend on the development of robust unsupervised and 

https://www.oncologyjournals.net/


 

~ 3 ~ 

International Journal of Oncology Sciences https://www.oncologyjournals.net 

self-learning algorithms capable of adapting to 
heterogeneous data and generalizing effectively from 
limited annotated samples, thereby improving reliability and 
clinical confidence (Al Husaini et al., 2024; Mirasbekov et 
al., 2024) [3, 29]. 
 
4. Clinical Applications and Integration 
AI systems assist radiologists in workflow prioritization, 
reducing interpretive fatigue, and improving efficiency 

(Lauritzen et al., 2024; Leibig et al., 2022) [23, 25]. When 
incorporated into clinical workflows, AI can pre-screen 
normal examinations, flag critical cases, and provide 
adjunctive measures like BI-RADS categorization and 
compression of report turnaround times (Tan et al., 2025; 
Dratsch et al., 2023) [40]. Clinical implementation is seen in 
both high-income health systems and emerging programs 
aimed at democratizing access to diagnostic tools (Al 
Husaini et al., 2024) [3]. 

 
Table: 1: Summary of Imaging Modalities, Artificial Intelligence Models, and Their Clinical Applications in Breast Cancer Detection 

 

Imaging 
Modality Common AI Models Key Advances Typical Performance 

(AUC/Accuracy) Clinical Applications References 

Mammography 

CNNs (e.g., ResNet, 
DenseNet), Multi-

view CNNs, Transfer 
Learning 

Lesion detection, 
microcalcifications 
identification, risk 

stratification, BI-RADS 
categorization 

AUC > 0.93; Accuracy 
90-99% 

Workflow prioritization, 
reducing false 

positives/negatives, pre-
screening normal cases 

Sechopoulos et al. 
(2024) [37]; Carriero 
et al. (2024) [10]; Tan 

et al. (2025) [40] 

Ultrasound 

U-Net variants, 
Transfer Learning 
(e.g., DenseNet, 

EfficientNet), CNNs 

Lesion segmentation, 
classification, real-time 

decision support 

Accuracy up to 100%; 
AUC 0.95+ 

Adjunct for dense breasts, 
operator-independent 

assessment, point-of-care 
devices 

An & Li (2025) [6]; 
Alom et al. (2025) [5] 

MRI 
Hybrid Radiomics-

DL, CNNs, 
Multimodal models 

Lesion characterization, 
multiparametric analysis 

(DCE, DWI) 
AUC 0.92-0.97 

High-risk screening, 
equivocal findings 

resolution, risk stratification 

Al Khalil et al. 
(2023) [4]; Abdullah 

et al. (2025) [1]; Zhao 
et al. (2023) [44] 

Thermography SVM, CNNs, Hybrid 
ML-DL 

Thermal asymmetry 
detection, pattern recognition 

Variable; Accuracy 
85-95% (promising 

but inconsistent) 

Non-invasive screening in 
resource-limited settings, 

adjunct tool 

Goñi-Arana et al. 
(2024) [19]; Bansal et 

al. (2023) [8]. 
 

 
 

Fig 1: AI saliency/heatmaps highlighting breast lesions on mammograms (Pertuz et al., 2023) [33]. 
 

Figure 1 illustrates the application of AI-based saliency and 
heatmap techniques for highlighting suspicious breast 
lesions on mammograms, as reported by Pertuz et al. (2023) 

[33]. Panel (a) shows the original mammographic image with 
a radiologist-defined lesion boundary, serving as the ground 
truth, while panel (b) presents the AI-generated 
saliency/heatmap overlay, where warmer colors (yellow-
red) indicate regions with higher model attention and 

likelihood of malignancy. Notably, the heatmap 
concentrates on the lesion area rather than irrelevant 
surrounding tissue, demonstrating the model’s ability to 
capture diagnostically meaningful features such as mass 
density and architectural distortion. Panel (c) further 
compares AI-guided lesion localization with manual 
annotation, showing strong spatial agreement between the 
predicted region and expert-defined contours. This visual 
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correspondence highlights the potential of explainable AI 
methods to enhance transparency, build clinical trust, and 
support radiologists by clearly indicating why a model flags 
a region as suspicious. Overall, the figure underscores how 

saliency maps can function as effective decision-support 
tools, improving interpretability and facilitating the 
integration of AI into routine mammographic assessment. 

 

 
 

Fig 2: Futuristic visualization of AI integrating multiple imaging modalities (mammography, MRI, ultrasound) with neural network overlays 
(Ran et al., 2025) [35] 

 
Figure 2 presents a futuristic conceptual framework 
illustrating the integrative role of artificial intelligence 
across the breast cancer care continuum by combining 
multimodal imaging data mammography, ultrasound, MRI, 
and digital pathology with advanced neural network 
architectures (Ran et al., 2025) [35]. The visualization 
highlights how AI functions as a central analytical engine, 
supporting key clinical stages including screening, 
diagnosis, tumour grading, biomarker prediction (such as 
TMB/MSI), surgical assistance, prognosis estimation, and 
tumour microenvironment exploration. By fusing 
heterogeneous imaging and biological data, AI enables 

comprehensive feature extraction and cross-modal learning, 
leading to more accurate lesion characterization and 
personalized risk assessment. The depiction of neural 
network overlays emphasizes the shift from single-modality 
interpretation toward holistic, data-driven decision-making, 
where AI augments clinician expertise rather than replacing 
it. Overall, the figure underscores the transformative 
potential of AI in enabling precision oncology, streamlining 
clinical workflows, and advancing individualized breast 
cancer management through seamless integration of 
imaging, pathology, and predictive analytics. 

 

 
 

Fig 3: Explainable AI output: Deep learning model with attention maps for accurate breast cancer classification (Alom et al., 2025) [5] 
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Figure 3 demonstrates the application of explainable 
artificial intelligence (XAI) in breast ultrasound analysis, 
showcasing how a deep learning model classifies breast 
tissue while providing transparent visual justification for its 
prediction (Alom et al., 2025) [5]. The figure compares the 
original ultrasound image with the model’s predicted output, 
labeled as “Normal,” accompanied by attention or activation 
maps that highlight regions most influential in the 
classification process. The focused attention on relevant 
tissue structures, rather than background artifacts, indicates 
that the model is learning clinically meaningful features 
such as tissue homogeneity and echo patterns. This 
interpretability is crucial for enhancing clinician confidence, 
as it allows radiologists to verify that AI decisions are 
grounded in valid anatomical and pathological cues. 
Overall, the figure underscores the importance of 
explainable AI frameworks in improving diagnostic 
reliability, facilitating clinical adoption, and ensuring 
responsible integration of deep learning models into breast 
cancer screening and diagnostic workflows. 
 
Conclusion 
AI is revolutionizing breast cancer detection by enhancing 
performance across imaging modalities and supporting 
clinical decision-making. Deep learning models, especially 
in mammography, ultrasound, and MRI, have achieved high 
diagnostic accuracy and show potential to reduce false 
positives and negatives compared to traditional methods. 
Explainable AI and transfer learning further advance model 
reliability and interpretability. While challenges remain, 
including dataset standardization and clinical validation, 
ongoing research and integration efforts are poised to 
transform early detection paradigms and improve patient 
outcomes worldwide. 
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